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The Pearson Product-Moment Correlation Coefficient (hereafter: correlation coefficient) is a very 
popular and useful statistic.  It provides a measure of both the direction and the strength of the 
linear relationship between two variables.  The direction is given by the sign; the strength is given 
by the square of the correlation coefficient. 
 
The correlation coefficient (r) is both a descriptive and an inferential statistic.  It describes the 
relationship between two paired variables (X and Y) in a given sample (rXY); it also provides a very 
good estimate for this relationship in the population from which the paired sample was taken (ρXY).  
In other words, like the mean, the same formula is used for the descriptive stat and the best guess 
for the population.  Note, however, that r is only unbiased when ρ is zero, while r2 over-estimates 
ρ2 when r is near zero, especially when the sample-size is small.  (More on these issues later, 
when we get to measures of association.  There is a simple “fix” for at least one of these 
problems.) 
 
Calculating the Product-Moment Correlation Coefficient 
 
There are a variety of formulae for calculating the correlation coefficient.  They all produce the 
same value, but are more or less useful in different situations.  In general, the correlation 
coefficient equals the covariance between the two variables, divided by the product of their 
standard deviations: 
 rXY = COVXY / ( SX SY ) 
 
You may use either the observed covariance and observed standard deviations (i.e., those 
calculated using N), or the estimated population covariance and estimated standard deviations (i.e., 
those calculated using N−1), but the three must match.  The reason that you can use either version 
of these values is because the Ns or N–1s will “cancel” as they appear the same number of times in 
the numerator as in the denominator.  Thus, the value of r does not depend on N. 
 
Another nice property of the correlation coefficient is that it has no units.  The units of COVXY are 
the product of the units of X and the units of Y.  The units of SX are the units of X and the units of SY 
are units of Y.  Therefore, the units in the numerator of the formula for the correlation coefficient 
are the product of the X and Y units, and the units of the denominator are also the product of the X 
and Y units, so rXY has no units. 
 
Finally, because the most-extreme possible value for COVXY is the product of SX and SY, the 
most-extreme value for rXY is ±1.00.  So the correlation coefficient is a unitless measure with fixed 
extremes.  This is exactly the sort of thing that is particularly useful when one intends to make 
comparisons across samples that involve completely different dependent measures. 
 
Other Formulae for Sub-types of the Correlation Coefficient 
 
All of the formulae for the correlation coefficient produce the same answer, but some are more 
easy to use when doing the calculations by hand.  For example, if your data are already in the form 



of z-scores (which, by definition, have a mean of zero and a standard deviation of one), then the 
following can make things much easier: 
 
 rXY = ( Σ zX zY ) / N 
 
In words: the correlation coefficient is (also) the mean product of z-scores.  (Yes, this formula has 
an N in it, but it’s effectively cancelled by the Σ, so, as always, the size of r doesn’t depend on N.) 
 
Other short-cut formulae are available when the two variables are not both continuous, 
quantitative variables.  For example, when one variable is continuous and quantitative and the 
other is dichotomous (e.g., when correlating sex with anxiety), the point-biserial formula may be 
used: 
 rXY = [ ( Ῡ1 – Ῡ0 ) √ ( p1 p0 ) ] / SY 
 
where Ῡ1 and Ῡ0 are the mean values of the quantitative variable for the two levels of the 
dichotomous variable (which is here coded as having values 1 and 0), p1 and p0 are the proportions 
in the two levels (so they must sum to 1.00), and SY is the standard deviation of the quantitative 
variable ignoring the dichotomous variable.  (Note that it’s traditional to use 1 and 0 [as opposed 
to, say, 1 and 2], because dichotomous variables are often yes vs no or true vs false or succeed vs 
fail and, more importantly, must be coded this way for fancier forms of regression.) 
 
Another short-cut is useful when both variables are dichotomous.  The Phi Coefficient (rφ) is: 
 
 rφ = (BC-AD) / √ [(A+B)(C+D)(A+C)(B+D)] 
 
where A, B, C, and D are the frequencies in the four cells:   A B 
(with cells A & B vs C & D [rows] being the levels of one variable, 
and cells A & C vs B & D [columns] being the levels of the other variable) C D 
 
  Note: all of the different formulae for rXY produce the same answer.  They differ only in some 
specific steps of calculation.  Put another way: the alternative formulae (other than the original, 
COVXY / SX SY ) have merely been simplified, not radically altered. 
 
 All correlation coefficients are “reversible” in that rXY = rYX.  However, regression coefficients 
are not reversible, so we should all get in the habit of including the subscripts starting now. 
 
Testing the Significance of a Correlation Coefficient 
 
Before going into the details of significance testing, recall the following: in order to conduct any 
kind of inferential test, it is necessary to set up some sort of hypothetical sampling distribution for 
the value of interest and this often involves making assumptions (e.g., about shape).  In the case of 
the univariate t-test for the mean, for example, the hypothetical sampling distribution was created 
by making an assumption about its shape (i.e., that it is always normal) and then using the 
estimated population standard deviation (extracted from the sample) to set the spread.  Estimating 
the population standard deviation has N–1 degrees of freedom because the standard deviation 



requires an estimate of the mean, so the univariate t-test has N–1 df.  In contrast, in the case of the 
correlation coefficient, we have to estimate two population standard deviations (one for X and one 
for Y), plus the covariance.  To do this, we need estimates of both means, so the degrees of 
freedom for a correlation is N–2. 
 
In general, there are two ways to use an observed correlation coefficient to test the null hypothesis 
that ρ=0.  One way is to simply look up the critical value of r in a table or get it from the web; 
many text-books include such a table.  The other way is to convert the value of r to a value of t, 
which, again, has N–2 df: 
 t = ( r √ df ) / √ ( 1 − r2 ) 
 
The fact that a correlation coefficient can be directly transformed into a t-statistic has some deep 
and interesting implications. 
 
⊕  To test the significance of a correlation under SPSS, use Statistics...Correlate...Bivariate... and 
then push the two variables over to the dependent variable window and click OK.  Note that SPSS 
reports N, not N–2, so you have to subtract two to find the degrees of freedom.  Note, also, that 
because SPSS has no idea what α you use, it reports a p-value to three decimal places.  Finally, 
when you use Statistics...Correlate...Bivariate... you won’t be given the value of t.  If the journal 
wants this, too, for some reason, you need to use the formula above (or a different SPSS procedure 
for getting the correlation).  
 
At this point, stop and use SPSS to get the correlation between the two variables in Demo13A.sav.  
The output will say that r = .965, p = .000, and N = 32.  This should be re-expressed as r = .97, 
t(30) = 20.15, p < .001. 
 
Fisher’s z′ Transformation (Revisted) and Some Other Tests of Correlations 
 
Because the value of a correlation coefficient is “trapped” between ±1.00, it clearly isn’t normal.  
Therefore, it would be a clear violation of the assumptions of most inferential tests to use raw 
correlation coefficients as the dependent measure in a t-test or an ANOVA.  Fortunately, as 
already mentioned in lecture, there is an already-worked-out transformation for converting 
correlation coefficients into a new set of values that are close enough to normal for our purposes.  
This is Fisher’s z′ (“zee prime”) Transformation: 
 
 z′  =  ½ [ ln ( 1+r ) – ln ( 1−r ) ]  =  ½ ln [ (1+r ) / ( 1−r ) ] 
 
where ln stands for the natural logarithm.  Thus, if you have calculated separate correlation 
coefficients for each of N subjects, and now want to know if the mean value of individual rs (in the 
population) is equal to V, then you can convert the rs to z′s and use the univariate t-test. 
 
  Note the wording of the above: the univariate t-test on a set of z′s concerns the mean 
correlation coefficient in the population, where each member of the population has their own r and 
these can vary (a lot); it does not concern the correlation coefficient across the members of the 
population.  As an example of the first situation, consider the correlation between mood and 



weather (where each person in the population can have a different value, such that some people are 
greatly affected by weather, and others are not); the z′ test would be used to test the idea that 
people, on average, are affected by weather.  As an example of the second, consider the 
correlation between anxiety and depression (which are often assumed to be relatively stable within 
people, so each is only measured once in a given person); the standard r test would be used to 
check for a linear relationship between the two variables across people.  This second case 
wouldn’t necessarily involve the use of Fisher’s z′; you can just use the one value of r that you 
have. 
 
However, you do need the z′ transform when you want to test a null hypothesis other than ρ=0.  In 
this case, you use a z-test (not a typo: no “prime” mark), because the hypothetical sampling 
distribution of z′ is known to be the same as the standard normal (and doesn’t require any 
estimating).  The value of z is given by: 
 
 z = ( z′O − z′H ) / σz′ 
 
where z′O is the transform of the observed value of r, z′H is the transform of the value of r under the 
null hypothesis, and σz′ is the standard error of z′, which is given by: 
 
 σz′ = 1 / √ (N−3) 
 
for reasons that I can only half explain.  (Note the use of the lower-case sigma, instead of an s, to 
represent the standard error; this is a way of saying that there is no error in estimating this value, 
which is why we are using a z-test and not a t-test.)  If the value of z is outside the range of ±1.96, 
it is significant at the α=.05 level. 
 
Similarly, to test whether two independent correlation coefficients are different from each other 
(e.g., to test the null hypothesis that ρAB = ρCD, where A, B, C, and D are four different variables), we 
can use: 
 z = ( z′AB – z′CD ) / σz′-z′ 
 
where z′AB and z′CD are the transforms of the two rs and σz′-z′ is the standard error of their difference, 
which is given by: 
 σz′-z′ = √ { [ 1/(NAB−3) ] + [ 1/(NCD−3) ] } 
 
Again, because this is a z-test, anything outside the range of ±1.96 implies a significant difference. 
 
⊕  SPSS will not perform any of these latter tests for you.  (SPSS doesn’t even have a built-in 
gizmo for Fisher’s z′.)  Therefore, here are some practice examples: 
 
A sample with N = 25 had r = .65.  What is t ? 

A sample with N = 50 had r = .85.  Can the null hypothesis that ρ = .70 be rejected? 

A sample with N = 60 produced rAB = .40.  A completely separate sample with N = 35 produced 
rCD = .60.  Can we reject the null hypothesis that ρAB = ρCD?  



 
A sample with N = 25 had r = .65.  What is t ? t = ( .65 √ 23 ) / √ ( 1 − .652 )   therefore, t(23) = 4.10 
 
 
A sample with N = 50 had r = .85.  Can the null hypothesis that ρ = .70 be rejected? 
    z′O = 1.2562,  z′H = 0.8673,  σz′ = 0.1459 z = 2.67    therefore, yes, reject H0 
 
 
A sample with N = 60 produced rAB = .40.  A completely separate sample with N = 35 produced 
rCD = .60.  Can we reject the null hypothesis that ρAB = ρCD? 
        z′AB = 0.4236, z′CD = 0.6931, σz′-z′ = 0.2209     z = -1.22    therefore, no, retain H0 


